22 research outputs found

    EDITORIAL

    Get PDF
    This book contains biographies of Jawaharlal Nebru and Rajya Sabhaxi, 139 p.; 23 c

    EDITORIAL

    Get PDF

    EDITORIAL

    Get PDF

    Crowdsmelling: The use of collective knowledge in code smells detection

    Full text link
    Code smells are seen as major source of technical debt and, as such, should be detected and removed. However, researchers argue that the subjectiveness of the code smells detection process is a major hindrance to mitigate the problem of smells-infected code. We proposed the crowdsmelling approach based on supervised machine learning techniques, where the wisdom of the crowd (of software developers) is used to collectively calibrate code smells detection algorithms, thereby lessening the subjectivity issue. This paper presents the results of a validation experiment for the crowdsmelling approach. In the context of three consecutive years of a Software Engineering course, a total "crowd" of around a hundred teams, with an average of three members each, classified the presence of 3 code smells (Long Method, God Class, and Feature Envy) in Java source code. These classifications were the basis of the oracles used for training six machine learning algorithms. Over one hundred models were generated and evaluated to determine which machine learning algorithms had the best performance in detecting each of the aforementioned code smells. Good performances were obtained for God Class detection (ROC=0.896 for Naive Bayes) and Long Method detection (ROC=0.870 for AdaBoostM1), but much lower for Feature Envy (ROC=0.570 for Random Forrest). Obtained results suggest that crowdsmelling is a feasible approach for the detection of code smells, but further validation experiments are required to cover more code smells and to increase external validity

    EXPEDIENTE

    Get PDF

    Code smells detection and visualization: A systematic literature review

    Full text link
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.Comment: submitted to ARC
    corecore